

METAL COMPATIBILITY

Principle of galvanic corrosion

Galvanic corrosion takes place in the presence of three different conditions:

- Two metals of different natures, with different oxidation-reduction potential
- The electrical contact between these two metals
- The presence of water acting as an electrolyte, coating the two metals

Reducing galvanic corrosion consists of eliminating one of these three conditions. However, it is impossible for us to eliminate the water or the nature of the metals in contact. It is possible for us to avoid electrical contact, we will see how. Some materials, such as iron, rust by themselves in water, this is self-corrosion and will not be detailed in what follows. We will focus on galvanic corrosion which is much more problematic. Galvanic corrosion is like a shorted battery. The term galvanic refers to an electric current flowing between two metals with movement of metal ions.

Metal 1 corroded is called anode: the steel releases metal ions (Fe2+ for example)

An electric current circulates between these two metals: Electrons.

The metal 2 which is charged with metal ions is the cathode.

The table below summarizes the metals that should be avoided.

	2																								750	750	590	550	550	550	0
QV9 IA	1400	1270	1150	1150	1050			970	950	830	800	750	630	600	560	560	400	355	310	305	300	300	300	295	200	200	40	0	0	0	560
(ɔuiz) nz	1400										800	750	630	600	660	560	400	355	310	305	300	300	300	295	200	200	40	0	0	0	560
SZUZ SZ US	1350								015	780	760	710	590	560	520	420	360	295	270	265	260	260	260	255	160	160	0	40	40	40	590
(muilisemIA) 7.02 gM IA	1200	1070	950	950	850	770	770	770	750	630	600	550	430	400	360	260	200	135	110	105	100	100	100	95	•	0	160	200	200	200	845
Cr (Chromium)	1200	10701	950	950	850	770	770	770	750	630	600	550	430	400	360	260	200	135	110	105	100	100	100	95	0	0	160	200	200	200	842
Fe (Iron)	1105	975	855	855	755	675	675	675	655	535	505	455	335	305	265	165	105	40	15	10	5	5	5	0	95	95	225	295	295	295	645
(muimbs2) b2	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	s	100	100	260	300	300	300	850
(muinimulA sgeillA) StODA	1100	026	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	s	100	100	260	300	300	300	850
(xonilanud) 2gM IA	1100	970	850	850	750	670	670	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	0	5	100	100	260	300	300	300	850
Hard steel	1095	985	845	845	745	665	665	665	645	525	495	445	325	295	255	155	95	30	5	0	5	5	5	10	105	105	265	305	305	305	850
(muinimulA) 2.ee IA	1090				740	660	660	66	640	520	490	410	320	290	250	150	06	25	0	5	10	10	10	15	110	110	270	310	310	310	860
(H x6qIA) 3M01 i2 IA	1065				715	635	635	635	615	495	465	415	295	265	225	125	65	0	25	30	35	35	35	40	135	135	295	335	335	335	885
S oft steel	1000		750	750	650	570	570	570	550	430	400	350	230	200	160	60	0	65	90	95	100	100	100	105	200	200	360	400	400	400	950
(nimula1uD) I gM uD M	940		690	069	590	510	510	510	490	370	310	290	170	140	100	0	60	125	150	155	160	160	160	165	260	260	420	460	460	460	1010
bb (Lead)	840	710	590	590	490	410	410	410	380	270	210	190	70	40	0	100	150	225	250	255	260	260	260	265	380	380	520	560	560	560	1110
(niT) n2	800	670	550	550	450	370	370	370	350	230	200	150	30	0	40	140	200	265	290	295	300	300	300	305	400	400	650	600	600	600	1150
Cu88 Sn12 (Bronze)	770	610	520	520	420	340	340	340	320	200	170	120	0	30	70	170	230	295	320	325	330	330	330	335	430	430	590	630	630	630	3180
Cu Zn34 (Brass)	650	520	400	400	300	220	220	220	200	80	50	0	120	150	190	290	350	415	440	445	450	450	450	455	550	550	710	750	750	750	1300
AEdq 33N2 01iA	600	470	350	350	250	170	170	170	150	30	0	50	170	200	240	340	400	465	490	495	500	500	500	505	600	600	760	800	800	800	1390
Cu (Copper)	570	410	320	320	220	110	110	110	120	0	30	80	200	230	270	370	430	495	520	525	530	530	530	535	630	630	064				1500
CuSS Zn23 Ni22 (Arcap)	450	320	200	200	100	20	20	20	0	120	150	200	320	350	380	490	550	615	640	645	650	650	650	655	750	750	910				1520
NiCr15 Fe8 (Inconel 600)	430	300	180	180	80	0	0	0	20	140	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930				1600
Ni Cu 30 (Monel 400)	430	300	180	180	80	0	0	0	20	140	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	930				1600
Ni (Nickel)	430	300	180	180	80	0	0	0	20	140	170	220	340	370	410	510	570	635	660	665	670	670	670	675	770	770	330				1606
(Silver) gA	350	220	110	110	0	80	80	80	100	220	250	300	420	450	490	590	650	715	740	745	750	750	750	755	850						1600
(ləəts szəlnists əvissed) JƏLE IZIA	250	110	0	0	100	180	180	180	200	320	350	400	520	550	590	690	750														1700
(Эпсэті) іТ	250	110	0	0	100	180	180	180	200	320	350	400	520	550	590	690	750														1700
(bloð) uA	130	0	110	110	220	300	300	300	320	440	470	520	640	670	710																1820
Pt (Platine)	0	130	250	250	350	430	430	430	450	570	600	650	770	800	840	096	TOOD	1065	1090	1095	DOIT	1160	OOTT	SOLL	1200	1200	1350	1400	1460	1400	1900
ole of electrochemical couples	stine)	(plo	ane)	16L (passive stainless steel)	lver)	ckel)	30 (Monel 400)	5 Fe8 (Inconel 600)	Zn23 Ni22 (Arcap)	pper)	N66 Pb34	34 (Brass)	ŝn12 (Bronze)	(1	(pe	Mg1 (Duralumin)	eel	0Mg (Alpax H)	5 (Aluminium)	iteel	5 (Duralinox)	2 (Alliage Aluminium)	dmium)	(uc	romium)	S0.7 (Almasilium)	Zn25	nc)	(Zamac 3)	0	Aagnesium)

ŝ

501 - 800 mV 301 - 500mV

> 800 mV

0 - 300mV